Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.

نویسندگان

  • Bharat Bhushan
  • Yong Chae Jung
  • Kerstin Koch
چکیده

Superhydrophobic surfaces exhibit extreme water-repellent properties. These surfaces with high contact angle and low contact angle hysteresis also exhibit a self-cleaning effect and low drag for fluid flow. Certain plant leaves, such as lotus leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical roughness of their leaf surfaces. The self-cleaning phenomenon is widely known as the 'lotus effect'. Superhydrophobic and self-cleaning surfaces can be produced by using roughness combined with hydrophobic coatings. In this paper, the effect of micro- and nanopatterned polymers on hydrophobicity is reviewed. Silicon surfaces patterned with pillars and deposited with a hydrophobic coating were studied to demonstrate how the effects of pitch value, droplet size and impact velocity influence the transition from a composite state to a wetted state. In order to fabricate hierarchical structures, a low-cost and flexible technique that involves replication of microstructures and self-assembly of hydrophobic waxes is described. The influence of micro-, nano- and hierarchical structures on superhydrophobicity is discussed by the investigation of static contact angle, contact angle hysteresis, droplet evaporation and propensity for air pocket formation. In addition, their influence on adhesive force as well as efficiency of self-cleaning is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication i...

متن کامل

Superhydrophobic micro/nano dual-scale structures.

In this paper, we present superhydrophobic micro/nano dual structures (MNDS). By KOH-etching of silicon, well-designed microstructures, including inverted pyramids and V-shape grooves, are first fabricated with certain geometry sizes. Nanostructures made of high-compact high-aspect-ratio nanopillars are then formed atop microstructures by an improved controllable deep reactive ion etching (DRIE...

متن کامل

Coordination-Driven Controlled Assembly of Polyphenol-Metal Green Coating on Wood Micro-Grooved Surfaces: A Novel Approach to Stable Superhydrophobicity

A versatile, fast, and nature-inspired polyphenol chemistry surface modification was applied to prepare superhydrophobic surfaces with micro-grooved structures in this study. Tannic acid and iron ion (TA–FeIII) complexes were employed as a molecular building block for anchoring biomimetic coating onto the wood substrate with catalytically reducing formative Ag ions as the rough surface to ensur...

متن کامل

Hierarchical micro/nano structures for super-hydrophobic surfaces and super-lyophobic surface against liquid metal

Non-wetting super-hydrophobic or super-lyophobic surfaces are of great interest in a variety of applications. Natural water repelling surfaces show micro-/nanocombined hierarchical structure which shows extremely low wettability and self-cleaning characteristics. Inspired by such natural wonders, there have been tremendous efforts to create artificial non-wetting super-hydrophobic or super-lyop...

متن کامل

Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures.

This paper reports a novel single-step wafer-level fabrication of superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) films. The MNDS PDMS films were replicated directly from an ultralow-surface-energy silicon substrate at high temperature without any surfactant coating, achieving high precision. An improved deep reactive ion etching (DRIE) process with enhanced passivat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 367 1894  شماره 

صفحات  -

تاریخ انتشار 2009